AI-DRIVEN DATA MODELING AUTOMATION
DOI:
https://doi.org/10.34218/IJCET_16_03_030Keywords:
Automation, AI, Modelling, DataAbstract
A self-learning system for monitoring and removing toxic content is proposed in this paper for retail industries. Due to the use of NLP, CNNs, transformers, and a continuous learning loop, the system detects harmful information found in both texts and images. Accuracy and efficiency in spotting toxic comments are high in different circumstances when using the toxicity detector.
References
Wang, Z., Zhou, L., Das, A., Dave, V., Jin, Z., & Zou, J. (2020). Survive The schema changes: Integration of unmanaged data using deep learning. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2010.07586
Gadde, H. (2024). AI-Driven schema evolution and management in heterogeneous databases. www.academia.edu. https://www.academia.edu/124871835/AI_Driven_Schema_Evolution_and_Management_in_Heterogeneous_Databases
Mumuni, A., & Mumuni, F. (2024). Automated data processing and feature engineering for deep learning and big data applications: a survey. Journal of Information and Intelligence. https://doi.org/10.48550/arXiv.2403.11395
Seenivasan, D. (2024). AI driven enhancement of ETL workflows for scalable and efficient cloud data engineering. International Journal of Engineering and Computer Science, 13(06), 26837–26848. https://doi.org/10.18535/ijecs.v13i06.4824
Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: A review. ACM computing surveys (CSUR), 54(2), 1-38. https://doi.org/10.48550/arXiv.2007.02500
Nolle, T., Luettgen, S., Seeliger, A., & Mühlhäuser, M. (2018). Analyzing business process anomalies using autoencoders. Machine Learning, 107, 1875-1893. https://doi.org/10.48550/arXiv.1803.01092
Sugureddy, A.R. (2023). AI-driven solutions for robust data governance: A focus on generative ai applications. International Journal of Data Analytics (IJDA), 3(1), pp. 79-89. https://iaeme.com/Home/article_id/IJDA_03_01_007
Brahma, R., & Gore, M.P. (2024). AI-Driven Data Modeling Techniques for Enhancing Micro Services in Banking Systems, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 13, Issue 09. https://www.ijert.org/ai-driven-data-modeling-techniques-for-enhancing-microservices-in-banking-systems
Himeur, Y., Elnour, M., Fadli, F., Meskin, N., Petri, I., Rezgui, Y., Bensaali, F., & Amira, A. (2022). AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artificial Intelligence Review, 56(6), 4929–5021. https://doi.org/10.1007/s10462-022-10286-2
Azimi, S., & Pahl, C. (2024). Anomaly analytics in data-driven machine learning applications. International Journal of Data Science and Analytics. https://doi.org/10.1007/s41060-024-00593-y
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Balaji Conda Shankar (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.