DESIGNING A METADATA-DRIVEN GENERIC SEARCH FRAMEWORK FOR SCALABLE INSURANCE PLATFORMS
DOI:
https://doi.org/10.34218/IJCET_16_03_005Keywords:
Metadata, Insurance, AI, ScalabilityAbstract
In this research we design a scalable insurance platform search framework based on metadata. The solution increases discovery efficiency and system scalability with the help of metadata decoupling, dynamic UI generation and predictive caching. Using simulations, these achieve a great latency, precision, and throughput while providing a robust modernization path for modern insurance data infrastructure.
References
Bäuerle, A., Demiralp, Ç., & Stonebraker, M. (2024). Humboldt: Metadata-Driven Extensible Data Discovery. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2408.05439
Vattumilli, N. P. K. (2024). Metadata-Driven ETL Pipelines: A framework for scalable data integration architecture. International Journal of Scientific Research in Computer Science Engineering and Information Technology, 10(6), 1799–1807. https://doi.org/10.32628/cseit241061224
Zhang, B., & Kosar, T. (2021). SMURF: Efficient and Scalable metadata access for distributed applications. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2105.14157
Sawadogo, P. N., Scholly, E., Favre, C., Ferey, E., Loudcher, S., & Darmont, J. (2019). Metadata systems for data lakes: models and features. In New Trends in Databases and Information Systems: ADBIS 2019 Short Papers, Workshops BBIGAP, QAUCA, SemBDM, SIMPDA, M2P, MADEISD, and Doctoral Consortium, Bled, Slovenia, September 8–11, 2019, Proceedings 23 (pp. 440-451). Springer International Publishing. https://doi.org/10.48550/arXiv.1909.09377
Moawed, S., Algergawy, A., Sarhan, A., & Eldosouky, A. (2018). A framework for efficient matching of Large-Scale metadata models. Arabian Journal for Science and Engineering, 44(4), 3117–3135. https://doi.org/10.1007/s13369-018-3443-4
Harvey, M. J., McLean, A., & Rzepa, H. S. (2017). A metadata-driven approach to data repository design. Journal of Cheminformatics, 9(1). https://doi.org/10.1186/s13321-017-0190-6
Bhaduri, A., Jain, A., Sahoo, S., Halder, R., & Kumar, C. (2024). Metasurance: A Blockchain-Based Insurance Management Framework for Metaverse. Science and Technology Publications, 190–201. https://doi.org/10.5220/0012722100003687
Woodard, J. (2016). Big data and Ag-Analytics: An open source, open data platform for agricultural & environmental finance, insurance, and risk. Agricultural finance review, 76(1), 15-26. https://doi.org/10.1108/AFR-03-2016-0018
Herrmann, H., & Masawi, B. (2022). Three and a half decades of artificial intelligence in banking, financial services, and insurance: A systematic evolutionary review. Strategic Change, 31(6), 549-569. https://doi.org/10.1002/jsc.2525
Nagaraju, J., & Vijaya, J. (2022). Boost customer churn prediction in the insurance industry using meta-heuristic models. International Journal of Information Technology, 14(5), 2619-2631. https://doi.org/10.1007/s41870-022-01017-5
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Anand Sharma (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.