
ISSN Print: 0976-6367
ISSN Online: 0976-6375

IAEME Publication
Chennai, India

https://iaeme.com/Home/journal/IJCET

https://iaeme.com/Home/journal/IJCET 315 editor@iaeme.com

International Journal of Computer Engineering and Technology (IJCET)

Volume 16, Issue 3, May-June 2025, pp. 315-329, Article ID: IJCET_16_03_023

Available online at https://iaeme.com/Home/issue/IJCET?Volume=16&Issue=3

ISSN Print: 0976-6367; ISSN Online: 0976-6375; Journal ID: 5751-5249

Impact Factor (2025): 18.59 (Based on Google Scholar Citation)

DOI: https://doi.org/10.34218/IJCET_16_03_023

© IAEME Publication

PROGRAMMING LANGUAGES CHRONICLE

Hieu D. Vu, Ph.D.

Fort Hays State University

600 Park Street, Hays, KS. 67601, USA.

ABSTRACT

Since the development of computer, scientists, computer experts, and programmers

have been trying to find a better way to build software applications. Numerous

programming languages were developed, and the newer one has more power,

capabilities to facilitate programming. Along with the newer, object-oriented capability

languages such as C++, Java, C#, programming paradigm is also changed, from the

structured to object-oriented, and to component-oriented programming. This research

paper addresses the following questions: What is a programming language? What are

special features that a programming language can offer? How they relate to each

others? This paper considers books, and research papers on similar topics that might

provide a deeper understanding of programming languages, and the answers to these

questions above.

Keywords: Computer Languages, Programming, Pascal, Fortran, COBOL, Assembly,

Structure Programming, Object-Oriented Programming, Java, C++

Cite this Article: Hieu D. Vu. (2025). Programming Languages Chronicle.

International Journal of Computer Engineering and Technology (IJCET), 16(3), 315–

329.

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_16_ISSUE_3/IJCET_16_03_023.pdf

Hieu D. Vu

https://iaeme.com/Home/journal/IJCET 316 editor@iaeme.com

1. Introduction

It is important to know that the lifeblood of computer science is software development.

For a computer scientist, programming is a primary tool to communicate with a computer and

to program the computer what to do. This is why a part of computer science curricula is the

study of programming.

As computing hardware becomes faster, and more powerful, application software also

improved and becomes more complicated. New generation of computer’s software can do a lot

more than the previous generation can. For the programmers, the job of developing the

application has becomemore interesting and challenging.

The heart of software development is problem solving. [1]To develop a software

application, the developers or programmers need problem solving skill and a programming

language. The programming languages have evolved over the time, from machine language to

low-level language (Assembly) then to high-level language such as: COBOL, FORTRAN,

PASCAL, etc...and to object-oriented languages such as C++, Java, Visual Basic, and C#. There

are numerous programming languages that have been used today such as C++, Java, Visual

Basic, COBOL, Assembly, etc… Each programming language has its own characteristics, and

usability. This research paper introduces, evaluates some existing popular programming

languages. It studies the relationships between low-level (Assembly) and high-level languages

such as C++ and Java,and the might be “language of the future” C# (pronounce C-Sharp).

II. PROGRAMMING LANGUAGES (From the early years).

II.1. LOW-LEVEL LANGUAGE

1. ASSEMBLY

The Assembly language is classified as the only low-level language. It is not a complex

language but is awkward for human to work with. In the late 1950s, IBM developed the

Assembly language as one of the first programming language to run on its System 360. The

Assembly language is a one-to-one corresponding with machine language that assembles a

series of symbolic representations of machine language operation codes. These symbolic

representations are called Mnemonic operation codes. [2]

Since the early years, Assembly language had been used in commerce to develop

applications in banking, accounting, and insurance industries. Today, some of these

Programming Languages Chronicle

https://iaeme.com/Home/journal/IJCET 317 editor@iaeme.com

applications are still using, others were converted to the newer, easier to program, and more

powerful programming language.

A sample Assembly program segment.

 .CODE ; Code segment

 EXTRN putDec:NEAR ; Use subprogram putDec

datePgm PROC ; Begin procedure

mov ax, @data ; Requirement

mov ds, ax ; Boiler place

 _putStrmsg ; Write output message

 _getDate ; Get System Date

movsaveDX, dx ; Save Month and Day

mov al, dh ; Move month to register AL

mov ah, 0 ; Clear high value in AH

callputDec ; Write Month

 _putCh '/' ; Write '/'

mov dx, saveDX ; Restore Month, Day

mov al, dl ; Move day to register AL

mov ah, 0 ; Clear high value in AH

callputDec ; Write Day

 _putCh '/' ; Write '/'

mov ax, cx ; Move year to register AX

callputDec ; Write Year

 _Exit 0 ; Exit program

datePgm ENDP ; End datePgm procedure

END DatePgm ; End program

 ; Output of the program datePgm

 C:\ASM>datepgm ; Execute the program

 Today is: 2/3/2004 ; Output from the program

 C:\ASM> ; DOS prompt

Hieu D. Vu

https://iaeme.com/Home/journal/IJCET 318 editor@iaeme.com

As a low-level language, the Assembly allows programmers have a close look at the

hardware, especially the Central Processor Unit (CPU) and Memory. Macro _getDategets the

system date and the assembler will automatically place the month in register DH, day in DL,

and the year in register CX. The other macros _putCh used to print the slash (/) will destroy the

contents of both registers AX, and DX therefore we need to save values in both registers before

calling the macro. To display numeric value such as the month, first we need to move the month

into register AX then call an external, built-in subprogram named putDec to print the value

(whatever value is currently in register AX).

II.2. HIGH-LEVEL LANGUAGES

1. FORTRAN

The name FORTRAN stands for FORmulaTRANslator. IBM developed Fortran in 1957

as a primary language for scientific computation. The early version of Fortran is not really a

structured programming language, and it is hard to program. However, with its mathematical

computation capability, Fortran was very popular in scientific and engineering fields. In 1966,

the standard version of Fortran was recognized then it gradually evolved to newer versions

FORTRAN-II, FORTRAN-IV. Each new version made a few changes and added new features

to the old one. [3]

 A sample Fortran program segment.

Exercise 1-3.3, page 29. (Fortran, A Structured, Discipline Style by Davis, Hoffmann).

 (a) READ *,A,B,D

 (b) PRINT *,B,A,D

 (c) PRINT *,A,’IS ALL’

 (d) STOP

 (e) END

 (f) PRINT *,’C: ‘

 READ *,C

 PRINT *,’D: ‘

 READ *,D

Programming Languages Chronicle

https://iaeme.com/Home/journal/IJCET 319 editor@iaeme.com

The old version of Fortran use simple statements such as READ, PRINT, STOP, END,

etc… Just like the Assembly language, Fortran limited the variable’s names to eight characters

or less thus make it difficult to have a meaningful variable name, and the programmers have to

follow the exact format when coding a Fortran program. Today, in many American universities,

Fortran is still the required language for course that involved complicated scientific calculation,

such as “Numerical Analysis”.

2. COBOL

COBOL was developed in 1959 by CODASYL (COnference on DAtaSYstem

Language) committee. This committee included representatives from academia, user groups,

and computer manufacturers. The objective of CODASYL was to develop a standard business-

oriented language. As a result, the first Cobol compiler was available in 1960. The name

COBOL stands for COmmon Business Oriented Language, it is the most wide spread

commercial programming language that dominated the business world for many years. In 1968,

the first ANSI (American National Standards Institute) version of Cobol was developed and

approved. In 1974, the second version of ANSI Cobol was introduced with more efficient and

standardized. IBM also created newer versions of Cobol compilers called COBOL, COBOL-II,

and the latest COBOL-MVS to run on their new system IBM/390 mainframe computers. [4]

One special characteristic of a COBOL program is that it looks like an essay, easy to

understand even for management and non-technical staff. COBOL dominated the business

world for many years. It is a legacy, very well defined language. In COBOL, the procedures

are called paragraphs, statements are called sentences, and each statement must begin with a

verb.

A sample COBOL program segment.

Partial programming assignment 1.3, page 30. (Structured Cobol Programming by

Stern, Stern)

 PROCEDURE DIVISION.

A000-MAINLINE.

 PERFORM A100-INITIALIZE-RTN THRU A100-INITIALIZE-RTN-EXIT

 PERFORM A200-LOAD-TAX-TABLE THRU A200-LOAD-TAX-TABLE-

EXIT

 PERFORM B000-PROCESS-RECORD THRU B000-PROCESS-RECORD-

EXIT

 UNTIL NO-MORE-MAST-RECORD

 PERFORM Z000-FINAL-RTN THRU Z000-FINAL-RTN-EXIT.

A000-MAINLINE-EXIT.

Hieu D. Vu

https://iaeme.com/Home/journal/IJCET 320 editor@iaeme.com

EXIT.

A100-INITIALIZE-RTN.

 OPEN INPUT I-EMPMASTER-FILE

 I-TAXTABLE-FILE

OUTPUT O-REPORT-FILE

 ACCEPT W-SYSTEM-DATE FROM DATE

 MOVE W-SYSTEM-MONTH TO H-MONTH

 MOVE W-SYSTEM-DAY TO H-DAY

 MOVE W-SYSTEM-YEAR TO H-YEAR

OUTPUT:

03/26/2004 E M P L O Y E ES I N C O M E R E P O R T PAGE:

EMPLOYEE-NAME ANNUAL-SALARY TOTAL-DEDUCTION TAKE HOME INCOME

 Adam, John $65,000.00 $9,295.00 $55,705.00

 Flores, Tom $200,000.00 $5,800.00 $194,200.00

Nguyen, Hung V. $17,500.00 $2,327.50 $15,172.50

A typical COBOL program is long. There are a lot of codes as seen from the example

above. A COBOL program is very well defined, self-documented. It is divided into four

divisions: Identification, Environment, Data, and Procedure division. Identification division

provides all information about the program, date created, date compiled, and author.

Environment division will describe the system to be used to run the program, files in/output.

The Data division is important. It describes detail input/output record layouts, and any other

data for the program. The Procedure division contains the logic of the program. COBOL

program’s statement is very much like an English sentence therefore it is not difficult to read

and understand a COBOL source program. It is also why COBOL is specially designed for

business and it dominated the business world for such a long time.

3. BASIC

The language Basic was originally developed at Dartmouth College in the 60s, and used

as a tool for learning computer programming. The name BASIC stands for Beginner’s All-

purpose Symbolic Instruction Code. As the Basic language became more popular. Newer

versions of Basic with new enhanced features were developed by software vendors such as the

QuickBASIC, which was developed by Microsoft Corporation, and Turbo BASIC from

Borland International. [5]

As one of the early programming language, the Basic is not a structured language. Each

Basic statement begins with a line number, which is used as a mechanism in transferring the

Programming Languages Chronicle

https://iaeme.com/Home/journal/IJCET 321 editor@iaeme.com

control of execution of the program to another statement within the body of a program. To do

this, the programmer uses the GOTO (Line number) statement then uses another GOTO (Line

number) to return back to the statement after the previous GOTO. If a program contains many

GOTO statements, it is difficult for a programmer to follow the logic of the program. Some

researchers suggest “GOTO less” programming technique to help programming in Basic easier,

and more controllable.

An example of a Basic program.

Programming exercise 1.1, page 29. (Microsoft Basic by Bradley)

10 REM PROGRAM TO PRINT PERSON NAME AND AGE.

20 REM WRITTEN BY HIEU VU FOR CS-610

30 PRINT “TEAM RECORD”

40 PRINT

50 PRINT “NAME”, “AGE”

60 PRINT

70 PRINT “PATRICIA”, “18”

80 PRINT “RONALD”, “20”

90 PRINT “MARIA”, “21”

100 PRINT “TIEN”, “19”

110 PRINT “KENNETH”, “22”

REM Output from the Basic program segment.

RUN

TEAM RECORD

NAME AGE

PATRICIA 18

RONALD 20

MARIA 21

TIEN 19

KENNETH 22

III. OBJECT-ORIENTED PROGRAMMING

1. C++ (Pronounced “C Plus, Plus”).

In the early 1980s, BjarneStroustrup of AT&T Bell Laboratories developed the C++

programming language. Stroustrup designed the C++ as an expansion, or a better version of the

C language, therefore most components of C is a subset of C++, and so most C programs are

Hieu D. Vu

https://iaeme.com/Home/journal/IJCET 322 editor@iaeme.com

also C++ programs. This is not true in reversed case many C++ programs are definitely not C

programs. As a newer programming language, C++ also offers Object-Oriented Programming

capability, which is recently developed and became popular, widely used and a very powerful

programming technique. [6]

OOP has increased its popularity, since it offers several advantages over the traditional

structured procedural programming. A tradition program in C++ is a collection of functions.

Each function is a collection of data (local variables) and related statements that work together

to perform a single task. In OOP, the programmers concentrate their effort to write classes,

which are the blueprints for defining objects. An object is a collection of attributes (data) and

methods (functions) that work on these data. It is a self-entity that can act on it own. [7]

Object-Oriented capability opened a new era in programming. OOP has some special

characteristics and advantages over structured programming.

1. Encapsulation. Hiding the inner details. Objects are self-entities that contain data and

methods to work on these data. From the example above, the clients (client file) who use the

class do not need to find out “How a method works?” but only need to know “What it does?

What service it provides?” Encapsulation also protects private data and some methods from

“Abuse or misuse”.

2. Inheritance. Reusable software. This is the most important character of OOP. A class

can inherit attributes (data) and behaviors (methods) from another, existing class just like

children inherit characteristics from their parents. Inheritance saves times efforts and cost for a

programmer in creating new classes. Instead of starting from scratch, the programmer can reuse

some existing classes and add new features or make some adjustments to create a new class as

long as they have some similar characteristics.

3. Polymorphism. Polymorphism means many forms. This characteristic allows a

method behaves differently according to what object it received. A polymorphism method can

perform different tasks.

A sample of C++ program segment.

 //* This program computes an employee’s wages for the week *

 #include<iostream> //Include I/O stream

 using namespace std; //Using standard namespace

 voidcalcPay(float, float, float&); //Function prototyping

 const float MAX_HOURS = 40.0; //Maximum normal work hours

 const float OVERTIME = 1.5; //Overtime pay rate factor

 int main(){ //Function main()

Programming Languages Chronicle

https://iaeme.com/Home/journal/IJCET 323 editor@iaeme.com

 floatpayRate; //Employee’s pay rate

 float hours; //Hours worked

 float wages; //Wages earned

 intempNum; //Employee’s ID number

 cout<< “Enter employee number:”; //Prompt

 cin>>empNum; //Read employee ID number

 cout<< “Enter pay rate: “; //Prompt

 cin>>payRate; //Read hourly pay rate

 cout<< “Enter hours worked: “; //Prompt

 cin>> hours; //Read hours worked

 calcPay(payRate, hours, wages); //Compute wages

 cout<< “Employee: “ <<empNum<<endl //Output result

 << “Pay rate: “ <<payRate<<endl

 << “Hours: “ << hours <<endl

 << “Wage: “ << wages <<endl;

 return 0;

 }

 //***

 voidcalcPay(float payRate, float hours, float& wages){

 if(hours > MAX_HOURS)

 wages = (MAX_HOURS * payRate) +

 (hours – MAX_HOURS) * payRate * OVERTIME;

 else

 wages = hours * payRate;

 }

 /* OUTPUT

 (a) 327 8.30 48 ---> wages = 431.6

 (b) 201 6.60 40 ---> wages = 264

 (c) 29 12.50 40 ---> wages = 500

 (d) 166 9.25 51 ---> wages = 522.625

 (e) 254 7.00 32 ---> wages = 224

 */

The C++ program above illustrates a traditional structured modular programming

technique. Structured programming technique breaks down a large program into many

subprograms more manageable called functions therefore structured programming is also called

Functional Decomposition Programming. The main function calls another function to request

a service. Statement calcPay(payRate, hours, wages) invokes function calcPay() at the bottom

of the program and passes three data payRate, hours, and wages to this function. The function

calcPay() also needs to set up parameters list inside a pair of parentheses to receive the data.

This set up the controls for the communication between the functions. Except the function of

Hieu D. Vu

https://iaeme.com/Home/journal/IJCET 324 editor@iaeme.com

type void, other functions in C++ have two channels of communication: data passed to the

function via parameters list, and something should be returned from the function.

2. JAVA

Java was developed by a team led by James Gosling at Sun Microsystems in the early

1990s. Sun Microsystems was well known for its Sun workstations. The new language was

originally designed in 1991 and named Oak for use in embedded consumer electronic

applications. In 1995, it was redesigned for developing Internet applications and renamed Java.

Java programs can be embedded in HTML (Hyper Text Markup Language) pages and

downloaded by a Web browser to provide graphical animation and interaction to Web users.

Java is also a general purpose, high-level programming language, and can be used to

develop other applications. As a newer programming language, Java was designed to be a fully

object-oriented programming language. Unlike other object-oriented languages that began

strictly with structured procedural programming, Java is object-oriented from the start. This

could be a problem of difficulty in teaching novice, non-experienced programmers and students

in colleges and universities. [8]

A sample Java program.

 Programming exercise 1.1 (1-3), page 26,27. (Java Programming by Liang)

 //This sample Java program prints the words Welcome to Java

 public class Welcome{

 public static void main(String[] args){

 System.out.println(“\nWelcome to Java!\n”);

 }

 }

 /* OUTPUT

 Welcome to Java!

 */

This simple Java program shows that Java is fully Object-Oriented language, and all

Java programs are classes. The program has only method main(String[] args) and it must be

embodied inside a class definition public class Welcome. Inside the main method, there is a

println(“\nWelcom to Java\n”); method that will advance to the next line, after printing the

string “Welcome to Java”. The main method in Java is different from the main function in C or

C++. The main method in Java can receive an array of strings (String[] args). This special main

method allows a Java program to be run at the DOS Command prompt, and the user supplies

Programming Languages Chronicle

https://iaeme.com/Home/journal/IJCET 325 editor@iaeme.com

values for the string array. For instance, the following command will execute the Calculator

program and supplies the operator and two operands.

C:\>java Calculator * 25 15.

3. C# (Pronounced “C-Sharp”).

C# is the next phase in the evolution of C, C++ programming languages. It was

developed by Microsoft Corp., by a team led by Anders Hejlsberg and Scott Wiltamuth as the

principle language in the .NET platform. The .NET offers powerful capacity for software

development and deployment that included independence from specific language or platform.

As a new language, C# has roots in C, C++, and Java. C# adapted the best features of

each language such as object-oriented, and strong graphics capability, and added new features

of its own. C# is an event-driven, fully object-oriented, visual programming language.

Programmers can write, run, debug C# programs in an Integrated Development Environment

(IDE) conveniently.

A sample C# program.

//First C# program to print a string.

using System; //Using System class package

class Welcome1{ //Class Welcome 1

 static void Main(string[] args){ //Main method

 Console.WriteLine(“Welcome to C# Programming!”);

 }

}

The line using System is similar to C++ using namespace std for simplifying coding the

program. Conventional coding in C# is also slightly different from Java or C++, all method

names, or class names are capitalized the first letters such as: Main(),WriteLine(), and Console.

Unlike the C, C++ languages, C# like Java accepts numeric inputs as a string then

convert the string to numeric data. While Java needs other classes and methods such as

bufferedReader, and parseInteger(), parseDouble() to get input string and convert to numbers,

C# has a better, more simple way to input numeric data as the following illustration program.

Hieu D. Vu

https://iaeme.com/Home/journal/IJCET 326 editor@iaeme.com

using System; //Using System namespace

class Addition{ //Class Addition

 static void Main(string[] args){ //Main method

 string numberStr1, //First string number

 numberStr2; //Second string number

 intnumber1, //Number 1

 number2, //Number 2

 sum; //Sum of number1 and number2

 //Enter two numbers as strings

 Console.Write(“Enter first integer number: “); //Prompt input

 NumberStr1 = Console.ReadLine(); //Input number 1 string

 Console.Write(“Enter second integer number: “); //Prompt input

 NumberStr2 = Console.ReadLine(); //Input number 2 string

 //Convert two strings to integers

 number1 = Int32.Parse(numberStr1); //Convert string 1

 number2 = Int32.Parse(numberStr2); //Convert string 2

 //Find sum of two numbers

 sum = number1 + number2; //sum = number1 + number2

 //Print result

 Console.WriteLine(“\nThe sum is {0}.”, sum);

 }

 }

 /* OUTPUT

 Enter first integer number: 28

 Enter second integer number: 35

 The sum is: 63

 */

IV. C++ and JAVA RELATIONSHIPS.

To some students with programming experience, the C++ and Java languages appear to

be very similar. Many Java statements look exact the same as C++ statements, but we examine

the two languages in detail, they have differences in many categories:

a. Primitive data types. Same as C++, Java includes most of the same basic primitive

data types such as int, short, long, float, double, char. However, Java adds the byte data type.

Syntactically, the String data type in Java capitalized the letter S, and booleaninstead of bool

like C++.

b. Main method (function) and other methods. Functions are called methods in Java.

The main method in both languages serves the same purpose. It is the entry point for execution

Programming Languages Chronicle

https://iaeme.com/Home/journal/IJCET 327 editor@iaeme.com

for any C++, or Java programs. The main method in Java has the signature: public static void

main(String[] args) which enable a Java program to be executed in the DOS environment, and

the programmer can supply arguments to the Java program. In Java, all methods (all codes)

must be coded inside a class.

c. Files and including files. Java uses the import statement to include a class or a package

of classes. A file in Java also must have the same name as the class name.

d. Class and method definition. All methods (functions) in Java do not require the

function declaration, or prototyping. They only have the definition.

e. Pointers. Java does not have pointer type. It handles pointers differently. In fact, all

objects in Java are named as references.

f. Method passing parameters. Java has only one mean mechanism of passing

parameters called passing by values.

g. Multithreading. This is an advanced special feature of the Java language. Modern

computer can run more than one program at the same time. Multithreading allows programs

running concurrently that improves the system performance and gives us the feeling that the

machine can perform parallel processing. [9]

V. C# and JAVA RELATIONSHIP.

C# is the principle language in the .NET (dot NET) platform, a programming language

of choice. C# is built upon the C (high performance), C++ (Object-Oriented), Java (multi-

platforms, security), and the Visual Basic (VB, rapid development). As the language of the

future, C# is an ideal language for development of software components, Window and Web

applications.

C# included most Object-Oriented features of Java such as inheritance and

polymorphism, brought back other features from C, C++ like struct (structure), operator

overloading, and added new features delegates and events that are very useful in development

Windows and Webapplications, since both Windows and Web applications are event-driven.

VI. CONCLUSION.

We are living in a fast changing world. Advanced technology affects our daily lives,

and changes everything, the way we do things such as working, learning, playing, entertaining,

Hieu D. Vu

https://iaeme.com/Home/journal/IJCET 328 editor@iaeme.com

and the way we conduct business. For a computer professional, programming is still the most

important tool to communicate, to control, and to program a computer to do a specific task.

Computer technology changes rapidly, so as the programming languages. Programmers,

software engineers or computer professionals need to be aware of the new technology and new

programming language, so they can learn, adapt and update their skills easily and quickly

according to the change. This research paper provides a general knowledge, information about

programming, and programming languages. It also shows the relationships among them, and

the advantage, enhance features of the newer language over the older one. This research could

be used as a reference, a broad understanding, general concept about the nature, trend of

programming language. It would help the students, programmers in predicting, visualization

the new features of the future programming languages.

References:

[1] Riley, David D., (2003). The Object of JAVA, Blue Jay Edition. Addition Wesley, Pearson

Education, Inc. Page: xxv.

[2] Cashman, Thomas J., (1981). Introduction to Computer Programming IBM System/360

Assembler Language (14e). Anaheim Publishing Company. Brea, CA. 92621. Page 3.2.

[3] Davis, Gordon B., Hoffmann, Thomas R., (1978). FORTRAN A Structured, Disciplined

Style.McGraw-Hill Book Company, New York, NY. 10020. Pages: 5, 42.

[4] Stern, Nancy, Stern, Robert A., (1991). Structured COBOL Programming (6e).John Wiley &

Sons, Inc. Pages: 10, 11, 18.

[5] Bradley, Julia Case, (1991). Microsoft BASIC Using Modular Structure (3e).Wm. C.Brown

Publisher. Dubuque, IA. 52001. Pages: 9 - 11.

[6] Savitch, Walter. (2004). Problem Solving with C++, The Object of Programming (4e). Addition

Wesley.Page 20, 958.

[7] Gaddis, (2004), Starting Out With C++ (4e), Scott / Jones, Inc., El Granada, California

94018.Page 21

[8] Liang Daniel D., (2004). Introduction to Java Programming (4e).Prentice Hall. Upper Saddle

River, NJ. 07458. Page 4.

Programming Languages Chronicle

https://iaeme.com/Home/journal/IJCET 329 editor@iaeme.com

[9] Savitch Walter. (2004). Absolute Java (1e), Pearson Education, Inc., Page 958

Citation: Hieu D. Vu. (2025). Programming Languages Chronicle. International Journal of Computer

Engineering and Technology (IJCET), 16(3), 315–329.

Abstract Link: https://iaeme.com/Home/article_id/IJCET_16_03_023

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_16_ISSUE_3/IJCET_16_03_023.pdf

Copyright: © 2025 Authors. This is an open-access article distributed under the terms of the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Creative Commons license: Creative Commons license: CC BY 4.0

✉ editor@iaeme.com

