

https://iaeme.com/Home/journal/IJCET 516 editor@iaeme.com

International Journal of Computer Engineering and Technology (IJCET)

Volume 15, Issue 4, July-Aug 2024, pp. 516-526, Article ID: IJCET_15_04_045

Available online at https://iaeme.com/Home/issue/IJCET?Volume=15&Issue=3

ISSN Print: 0976-6367 and ISSN Online: 0976-6375

Impact Factor (2024): 18.59 (Based on Google Scholar Citation)
DOI: https://doi.org/10.5281/zenodo.13310800

© IAEME Publication

OPTIMIZING FUNNEL ANALYSIS IN MODERN

DATA WAREHOUSES

Satyam Shekhar

NetSpring Data Inc., USA

ABSTRACT

This article explores the implementation of funnel analysis in modern data

warehouses, focusing on its importance for product managers in understanding and

optimizing user journeys. It delves into the mechanics of funnel analysis, discussing two

primary approaches: the Join Sequence and Stacked Window Functions methods. The

article examines various query optimization techniques modern data warehouses

employ, including common subexpression elimination, aggregate pushdown, and

efficient handling of window functions. Additionally, it addresses performance

considerations for both approaches, highlighting the benefits of pre-computed join

indices and table clustering.

Satyam Shekhar

https://iaeme.com/Home/journal/IJCET 517 editor@iaeme.com

Throughout, the article emphasizes the critical role of funnel analysis in driving

data-driven decision-making and product success in today's competitive business

landscape.

Keywords: Funnel Analysis, Data Warehouses, Query Optimization, User Journey,

Product Performance

Cite this Article: Satyam Shekhar, Optimizing Funnel Analysis in Modern Data

Warehouses, International Journal of Computer Engineering and Technology (IJCET),

15(4), 2024, pp. 516-526.
https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_15_ISSUE_4/IJCET_15_04_045.pdf

INTRODUCTION

Funnel analysis has become an indispensable tool for product managers seeking to understand

and optimize user journeys through various stages of product interaction. This analytical

approach allows managers to track and visualize the customer's progression from initial

acquisition through activation, retention, referral, and ultimately revenue generation [1]. By

mapping out these critical touchpoints, product managers can identify bottlenecks, optimize

conversion rates, and make data-driven decisions to enhance overall user experience and

product performance.

The power of funnel analysis lies in its ability to provide granular insights into user behavior

at each stage of interaction. For instance, in an e-commerce platform, a typical funnel might

include visiting the homepage, browsing products, adding items to the cart, initiating checkout,

and completing a purchase. By examining the conversion rates and drop-offs between these

stages, product managers can pinpoint areas for improvement and allocate resources effectively

to maximize user engagement and conversions [2].

As the volume of user data grows exponentially, the challenge lies in collecting this

information and efficiently processing and analyzing it to derive actionable insights. This is

where modern data warehouses come into play, offering robust solutions for executing complex

funnel queries at scale. These advanced systems are designed to handle massive datasets and

perform sophisticated analyses with impressive speed and accuracy.

This article delves into the mechanics of funnel analysis, exploring its implementation

within the context of modern data warehouses. We will examine different approaches to

constructing funnel queries, discuss optimization techniques, and highlight how these powerful

analytical tools can be leveraged to drive product success in today's data-driven business

landscape.

Understanding Funnel Analysis:

Funnel analysis is a powerful technique that tracks user progression through defined stages,

providing product managers with a visual representation of conversion and drop-off rates at

each step of the user journey. This method derives its name from the funnel-like shape that

typically emerges when visualizing user flow, with the number of users decreasing as they move

through successive stages [3].

At its core, funnel analysis helps product managers answer critical questions about user

behavior and product performance. For instance, in an online learning platform, a typical funnel

might include stages such as "Getting Started," "Analytics Course," and "Paid Activation." By

examining this funnel, product managers can determine:

Optimizing Funnel Analysis in Modern Data Warehouses

https://iaeme.com/Home/journal/IJCET 518 editor@iaeme.com

1. How many users complete the initial onboarding process?

2. What percentage of users progress from introductory content to more advanced courses?

3. What proportion of users ultimately convert to paid subscribers?

The insights gained from funnel analysis can be transformative for product strategy. For

example, if there's a significant drop-off between "Getting Started" and "Analytics Course," it

might indicate that users are struggling to find relevant courses or that the transition between

introductory and advanced content needs improvement. Similarly, a low conversion rate to

"Paid Activation" could suggest that the perceived value of premium content needs to be

enhanced or that the pricing strategy should be reevaluated.

Moreover, funnel analysis enables product managers to:
● Identify bottlenecks in the user journey: By pinpointing stages where users are most likely to

drop off, product teams can focus their efforts on improving these critical points.

● Prioritize feature development: Understanding where users struggle or lose interest helps in

allocating resources to the most impactful improvements.

● Measure the impact of product changes: By comparing funnel metrics before and after

implementing changes, teams can quantify the effectiveness of their interventions.

● Set realistic conversion goals: Historical funnel data provides a baseline for setting achievable

targets and benchmarking performance.

● Segment users: Analyzing how different user cohorts move through the funnel can reveal

valuable insights about user preferences and behaviors.

The power of funnel analysis lies in its ability to provide a clear, data-driven picture of the

user journey. This visualization makes it easier for stakeholders across the organization to

understand and act on user behavior patterns. For instance, marketing teams can use funnel

insights to refine their messaging and target their efforts more effectively, while development

teams can prioritize features that address the most significant drop-off points [4].

Furthermore, funnel analysis can be extended beyond the traditional product usage scenario.

It can be applied to various business processes, such as sales pipelines, customer support

workflows, or even employee onboarding procedures. This versatility makes funnel analysis a

valuable tool across multiple departments within an organization.

By leveraging funnel analysis, product managers can make data-driven decisions to

optimize each stage of the user journey, ultimately leading to improved user engagement, higher

retention rates, and increased revenue. As businesses continue to prioritize user experience and

customer satisfaction, the role of funnel analysis in shaping product strategy is likely to become

even more crucial.

Fig. 1: Conversion Rates Across Key Stages of User Journey [3, 4]

Satyam Shekhar

https://iaeme.com/Home/journal/IJCET 519 editor@iaeme.com

Data Model:

To implement funnel analysis in modern data warehouses, we begin with a simplified schema

centered around a single "Events" table. This table typically contains essential columns such as

user_id, event_name, and event_time. While this model makes some simplifying assumptions,

it serves as a foundational structure for understanding funnel analysis implementation. It's

important to note that modern data warehouses can handle far more complex scenarios

efficiently, including semi-structured data and multiple table joins [5].

The Events table schema might look like this:
CREATE TABLE Events (

 event_id INT PRIMARY KEY,

 user_id INT,

 event_name VARCHAR(255),
 event_time TIMESTAMP,

 additional_attributes JSON

);

This schema allows for flexibility in capturing various event types while maintaining a

structured core. The additional_attributes JSON column can store event-specific data,

accommodating the diverse nature of user interactions without requiring schema changes for

each new event type.

When it comes to executing funnel queries, two primary approaches have emerged, each

with its own set of advantages and challenges:

1. Join Sequence Approach:

This method relies on creating subqueries for each funnel stage and then joining the results to

calculate user progression. The process involves:
● Generating a subquery for each stage of the funnel

● Joining these subqueries to track user movement through the stages

A simplified example of this approach might look like:

 WITH stage1 AS (
 SELECT DISTINCT user_id

 FROM Events

 WHERE event_name = 'Getting Started'
),

 stage2 AS (

 SELECT DISTINCT e.user_id

 FROM Events e
 JOIN stage1 s ON e.user_id = s.user_id

 WHERE e.event_name = 'Analytics Course'

 AND e.event_time > (SELECT event_time FROM Events WHERE user_id = e.user_id AND
event_name = 'Getting Started' LIMIT 1)

),

 -- Additional stages...
 SELECT

 COUNT(DISTINCT stage1.user_id) AS stage1_count,

 COUNT(DISTINCT stage2.user_id) AS stage2_count,

 -- Additional stage counts...
 FROM stage1

 LEFT JOIN stage2 ON stage1.user_id = stage2.user_id

 -- Additional joins...

Optimizing Funnel Analysis in Modern Data Warehouses

https://iaeme.com/Home/journal/IJCET 520 editor@iaeme.com

Advantages:

● Straightforward SQL syntax, making it easier for less experienced analysts to understand and

modify

● Intuitive representation of the funnel stages in the query structure

Challenges:

● Requires multiple table scans, which can be resource-intensive for large datasets

● Potentially expensive joins between subqueries, especially with high-cardinality user IDs

2. Stacked Window Functions Approach:

This more advanced technique leverages SQL window functions to create a stack of operations,

one for each funnel stage. The process involves:
● Utilizing window functions to partition data by user and order by event time

● Creating a cumulative stack of these functions to represent each funnel stage

An example of this approach:

 WITH funnel_stages AS (

 SELECT
 user_id,

 MAX(CASE WHEN event_name = 'Getting Started' THEN event_time END) OVER

(PARTITION BY user_id) AS stage1_time,

 MAX(CASE WHEN event_name = 'Analytics Course' THEN event_time END) OVER
(PARTITION BY user_id) AS stage2_time,

 -- Additional stages...

 FROM Events
)

 SELECT

 COUNT(DISTINCT user_id) AS total_users,
 COUNT(DISTINCT CASE WHEN stage1_time IS NOT NULL THEN user_id END) AS

stage1_count,

 COUNT(DISTINCT CASE WHEN stage2_time IS NOT NULL THEN user_id END) AS

stage2_count,
 -- Additional stage counts...

 FROM funnel_stages;

Advantages:

● Performs a single table scan, significantly reducing I/O operations

● Results in a simpler relational plan, often leading to better query performance

Potential optimization:

● Clustering the Events table by event_time can further enhance performance by reducing or

eliminating the need for sorting operations

The choice between these approaches often depends on factors such as the analysis's

specific requirements, the dataset's size, and the capabilities of the data warehouse in use. While

the Join Sequence Approach might be more intuitive for simple funnels, the Stacked Window

Functions Approach generally offers superior performance for complex, multi-stage funnels on

large datasets [6].

Satyam Shekhar

https://iaeme.com/Home/journal/IJCET 521 editor@iaeme.com

It's worth noting that modern data warehouses continue to evolve, with many now offering

advanced optimizations that can significantly improve the performance of both approaches.

These optimizations may include intelligent query planning, automatic indexing, and adaptive

execution strategies. As such, data analysts and engineers must stay informed about the latest

features and best practices specific to their chosen data warehouse platform.

Approach Table Scans Query

Complexity

Performance on

Large Datasets

Ease of

Understanding

Join Sequence Multiple High Lower Higher

Stacked Window

Functions

Single Medium Higher Lower

Table 1: Comparison of Funnel Analysis Approaches in Data Warehouses [5, 6]

Query Optimization Techniques:

Modern data warehouses employ sophisticated optimization techniques to enhance the

performance of complex queries, including those used in funnel analysis. These optimizations

are crucial for handling large-scale data efficiently and providing timely insights. Let's explore

some of the key optimization techniques:

1. Factoring out redundant computations:

Advanced query optimizers can identify and eliminate redundant calculations within a query.

This process, known as common subexpression elimination, involves recognizing repeated

subqueries or expressions and computing them only once. The results are then reused across

the query, significantly reducing processing time and resource consumption [7].

For example, in a funnel analysis query, we might have:

 SELECT

 COUNT(DISTINCT CASE WHEN event_name = 'Sign Up' THEN user_id END) AS signups,

 COUNT(DISTINCT CASE WHEN event_name = 'Purchase' THEN user_id END) AS purchases,

 COUNT(DISTINCT CASE WHEN event_name = 'Sign Up' THEN user_id END) /

 COUNT(DISTINCT user_id) AS signup_rate

 FROM events

 WHERE date >= '2023-01-01'

The optimizer would recognize that the COUNT(DISTINCT CASE WHEN event_name =

'Sign Up' THEN user_id END) expression is repeated and compute it only once.

2. Pushing aggregations below joins:

This technique, also known as aggregate pushdown, involves moving aggregation operations

before join operations in the query execution plan. By performing aggregations earlier in the

process, the amount of data that needs to be joined is reduced, leading to improved query

performance. This is particularly beneficial in funnel analysis queries where aggregations on

user actions are common before joining with other stages of the funnel.

Optimizing Funnel Analysis in Modern Data Warehouses

https://iaeme.com/Home/journal/IJCET 522 editor@iaeme.com

3. Single sort across multiple window functions:

When dealing with multiple window functions that share the same partitioning and ordering

criteria, modern optimizers can perform a single sort operation that serves all these functions.

This is especially relevant in the Stacked Window Functions approach to funnel analysis, where

multiple window functions are used to represent different stages of the funnel. By avoiding

redundant sorting operations, query execution time can be significantly reduced.

For instance, in a query like:

 SELECT

 user_id,

 MAX(CASE WHEN event_name = 'Sign Up' THEN event_time END) OVER (PARTITION BY

user_id) AS signup_time,

 MAX(CASE WHEN event_name = 'Purchase' THEN event_time END) OVER (PARTITION BY
user_id) AS purchase_time

 FROM events

The optimizer would perform a single sort operation on (user_id, event_time) to serve both

window functions.

4. Local distinct aggregation within partitions:

For queries involving distinct aggregations, such as counting unique users in each funnel stage,

optimizers can perform these aggregations locally within data partitions. This approach is

particularly effective when data is already partitioned by the aggregation key (e.g., user_id). By

avoiding the need to shuffle data across nodes in a distributed system, this optimization can

lead to substantial performance improvements [8].

These optimization techniques work in concert to dramatically improve query performance,

especially for complex analytical queries like those used in funnel analysis. However, it's

important to note that the effectiveness of these optimizations can vary depending on the

specific data warehouse system, the nature of the data, and the complexity of the query.

Moreover, query optimization is an ongoing field of research and development. Data

warehouse vendors continually refine their optimization strategies and introduce new

techniques. For instance, some systems now employ machine learning algorithms to predict the

most efficient query execution plans based on historical performance data.

To fully leverage these optimization techniques, it's crucial for data engineers and analysts to:
1. Understand the specific optimization capabilities of their chosen data warehouse system

2. Design schemas and write queries that can take advantage of these optimizations

3. Regularly review and update their approach as new optimization features become available

For example, when designing a schema for funnel analysis, consider:
● Partitioning strategies that align with common query patterns

● Appropriate indexing to support frequent join and filter operations

● Denormalization techniques to reduce the need for complex joins

By staying informed about these advanced optimization techniques and applying them

judiciously, organizations can ensure that their funnel analysis queries - and indeed all their

analytical workloads - are executed with maximum efficiency, enabling faster insights and

better decision-making.

Satyam Shekhar

https://iaeme.com/Home/journal/IJCET 523 editor@iaeme.com

Fig. 2: Comparative Impact of Query Optimization Techniques in Funnel Analysis [7, 8]

PERFORMANCE CONSIDERATIONS:

When implementing funnel analysis in modern data warehouses, it's crucial to consider the

performance implications of different query approaches. Both the Join Sequence and Stacked

Window Functions methods have unique performance characteristics that can be optimized

further:

1. Join Sequence Approach:

The Join Sequence method, while intuitive, can face performance challenges, especially with

large datasets. However, it may benefit significantly from pre-computed join indices. These

indices are data structures that store the results of join operations, allowing for faster retrieval

during query execution [9].

Pre-computed join indices can dramatically improve query performance by:
● Reducing the need for on-the-fly join computations

● Minimizing data movement across the cluster

● Enabling faster data access patterns

For example, in a funnel analysis scenario, we might create join indices that precompute

the relationships between user actions across different funnel stages. This could involve

creating an index that maps user IDs to their progression through the funnel stages, allowing

for rapid retrieval during query execution.

However, it's important to note that while pre-computed join indices can offer substantial

performance benefits, they also come with trade-offs:
● Increased storage requirements to maintain the indices

● Additional computational overhead to keep indices up-to-date as new data arrives

● Potential impact on data ingestion performance

Therefore, the decision to implement pre-computed join indices should be based on a careful

analysis of query patterns, data volumes, and available resources.

Optimizing Funnel Analysis in Modern Data Warehouses

https://iaeme.com/Home/journal/IJCET 524 editor@iaeme.com

2. Stacked Window Functions Approach:

The Stacked Window Functions method can leverage table clustering for improved

performance. Table clustering involves physically organizing table data based on specified

columns or expressions, which can significantly enhance query efficiency [10].

In the context of funnel analysis, clustering the Events table by event_time can yield several

benefits:
● Reduced I/O: Queries filtering on event_time can skip reading irrelevant data blocks

● Improved sort performance: Data may already be partially or fully sorted, reducing the

computational cost of window function operations

● Enhanced data locality: Related events are stored together, potentially improving cache hit rates

To implement effective clustering for funnel analysis:
● Choose clustering keys that align with common query patterns (e.g., event_time and user_id)

● Regularly maintain clustering through automated processes or manual reorganization

● Monitor query performance to ensure clustering continues to provide benefits as data and query

patterns evolve

While clustering can offer significant performance improvements, it may not be equally

beneficial for all queries. Queries that don't align with the clustering strategy may not see the

same level of performance enhancement.

When deciding between these approaches and considering their respective optimizations,

it's essential to:
1. Analyze your specific workload and query patterns

2. Conduct performance testing with representative data volumes

3. Consider the trade-offs between query performance, storage costs, and maintenance overhead

4. Regularly reassess your approach as data volumes grow and query patterns evolve

By carefully considering these performance optimizations and tailoring them to your

specific use case, you can ensure that your funnel analysis queries execute efficiently, providing

timely insights to drive product decisions.

Characteristic Join Sequence with Pre-

computed Indices

Stacked Window Functions

with Table Clustering

Query Performance High High

Storage Overhead High Medium

Maintenance Complexity High Medium

Data Ingestion Impact Medium Low

Flexibility for Various Queries Medium High

Table 2: Performance Trade-offs in Funnel Analysis Approaches [9, 10]

Satyam Shekhar

https://iaeme.com/Home/journal/IJCET 525 editor@iaeme.com

CONCLUSION

In conclusion, funnel analysis emerges as a pivotal tool for product managers, offering

invaluable insights into user behavior and product performance. Implementing funnel analysis

in modern data warehouses, through Join Sequence or Stacked Window Functions approaches

provides a powerful means to track and optimize user journeys. Organizations can extract

maximum value from their funnel analysis efforts by leveraging advanced query optimization

techniques and carefully considering performance implications.

As data analytics evolves, staying informed about the latest optimization strategies and

regularly reassessing analytical approaches will be crucial for maintaining a competitive edge.

Ultimately, the effective use of funnel analysis, supported by robust data warehouse

capabilities, empowers businesses to make data-driven decisions that enhance user experience,

increase conversions, and drive overall product success.

REFERENCES

[1] G. S. Day, "The capabilities of market-driven organizations," Journal of Marketing, vol. 58, no.

4, pp. 37-52, 1994. Available: https://doi.org/10.1177/002224299405800404

[2] A. J. Alvarez, "Data-Driven Product Management: How to Use Data to Develop, Launch and

Grow Your Products," O'Reilly Media, Inc., 2022. Available:

https://www.oreilly.com/library/view/data-driven-product-management/9781098141325/

[3] D. T. Bourgeois and T. Bourgeois, "Information Systems for Business and Beyond,"

Pressbooks, 2019. Available: https://bus206.pressbooks.com/chapter/chapter-2-information-

systems-for-business-and-beyond/

[4] A. Kohavi, A. Tang, and Y. Xu, "Trustworthy Online Controlled Experiments: A Practical

Guide to A/B Testing," Cambridge University Press, 2020. Available:

https://experimentguide.com/

[5] M. Kleppmann, "Designing Data-Intensive Applications: The Big Ideas Behind Reliable,
Scalable, and Maintainable Systems," O'Reilly Media, 2017. Available:

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/

[6] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, "Architecture of a Database System,"

Foundations and Trends in Databases, vol. 1, no. 2, pp. 141-259, 2007. Available:

https://dl.acm.org/doi/10.1561/1900000002

[7] S. Chaudhuri, "An Overview of Query Optimization in Relational Systems," in Proceedings of
the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, 1998, pp. 34-43. Available: https://dl.acm.org/doi/10.1145/275487.275492

[8] A. Thusoo et al., "Hive: A Warehousing Solution Over a Map-Reduce Framework," Proceedings

of the VLDB Endowment, vol. 2, no. 2, pp. 1626-1629, 2009. Available:

https://dl.acm.org/doi/10.14778/1687553.1687609

Optimizing Funnel Analysis in Modern Data Warehouses

https://iaeme.com/Home/journal/IJCET 526 editor@iaeme.com

[9] P. O'Neil and D. Quass, "Improved Query Performance with Variant Indexes," in Proceedings
of the 1997 ACM SIGMOD International Conference on Management of Data, 1997, pp. 38-

49. Available: https://dl.acm.org/doi/10.1145/253260.253268

[10] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos and S. Madden, "The Design and Implementation

of Modern Column-Oriented Database Systems," Foundations and Trends in Databases, vol. 5,

no. 3, pp. 197-280, 2013. Available: https://doi.org/10.1561/1900000024

Citation: Satyam Shekhar, Optimizing Funnel Analysis in Modern Data Warehouses, International Journal
of Computer Engineering and Technology (IJCET), 15(4), 2024, pp. 516-526

Abstract Link: https://iaeme.com/Home/article_id/IJCET_15_04_045

Article Link:

https://iaeme.com/MasterAdmin/Journal_uploads/IJCET/VOLUME_15_ISSUE_4/IJCET_15_04_045.pdf

Copyright: © 2024 Authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

✉ editor@iaeme.com

