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ABSTRACT 

This article explores the implementation of funnel analysis in modern data 

warehouses, focusing on its importance for product managers in understanding and 

optimizing user journeys. It delves into the mechanics of funnel analysis, discussing two 

primary approaches: the Join Sequence and Stacked Window Functions methods. The 

article examines various query optimization techniques modern data warehouses 

employ, including common subexpression elimination, aggregate pushdown, and 

efficient handling of window functions. Additionally, it addresses performance 

considerations for both approaches, highlighting the benefits of pre-computed join 

indices and table clustering.  
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Throughout, the article emphasizes the critical role of funnel analysis in driving 

data-driven decision-making and product success in today's competitive business 

landscape. 
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INTRODUCTION 

Funnel analysis has become an indispensable tool for product managers seeking to understand 

and optimize user journeys through various stages of product interaction. This analytical 

approach allows managers to track and visualize the customer's progression from initial 

acquisition through activation, retention, referral, and ultimately revenue generation [1]. By 

mapping out these critical touchpoints, product managers can identify bottlenecks, optimize 

conversion rates, and make data-driven decisions to enhance overall user experience and 

product performance. 

The power of funnel analysis lies in its ability to provide granular insights into user behavior 

at each stage of interaction. For instance, in an e-commerce platform, a typical funnel might 

include visiting the homepage, browsing products, adding items to the cart, initiating checkout, 

and completing a purchase. By examining the conversion rates and drop-offs between these 

stages, product managers can pinpoint areas for improvement and allocate resources effectively 

to maximize user engagement and conversions [2]. 

As the volume of user data grows exponentially, the challenge lies in collecting this 

information and efficiently processing and analyzing it to derive actionable insights. This is 

where modern data warehouses come into play, offering robust solutions for executing complex 

funnel queries at scale. These advanced systems are designed to handle massive datasets and 

perform sophisticated analyses with impressive speed and accuracy. 

This article delves into the mechanics of funnel analysis, exploring its implementation 

within the context of modern data warehouses. We will examine different approaches to 

constructing funnel queries, discuss optimization techniques, and highlight how these powerful 

analytical tools can be leveraged to drive product success in today's data-driven business 

landscape. 

Understanding Funnel Analysis: 

Funnel analysis is a powerful technique that tracks user progression through defined stages, 

providing product managers with a visual representation of conversion and drop-off rates at 

each step of the user journey. This method derives its name from the funnel-like shape that 

typically emerges when visualizing user flow, with the number of users decreasing as they move 

through successive stages [3]. 

At its core, funnel analysis helps product managers answer critical questions about user 

behavior and product performance. For instance, in an online learning platform, a typical funnel 

might include stages such as "Getting Started," "Analytics Course," and "Paid Activation." By 

examining this funnel, product managers can determine: 
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1. How many users complete the initial onboarding process? 

2. What percentage of users progress from introductory content to more advanced courses? 

3. What proportion of users ultimately convert to paid subscribers? 

The insights gained from funnel analysis can be transformative for product strategy. For 

example, if there's a significant drop-off between "Getting Started" and "Analytics Course," it 

might indicate that users are struggling to find relevant courses or that the transition between 

introductory and advanced content needs improvement. Similarly, a low conversion rate to 

"Paid Activation" could suggest that the perceived value of premium content needs to be 

enhanced or that the pricing strategy should be reevaluated. 

Moreover, funnel analysis enables product managers to: 
● Identify bottlenecks in the user journey: By pinpointing stages where users are most likely to 

drop off, product teams can focus their efforts on improving these critical points. 

● Prioritize feature development: Understanding where users struggle or lose interest helps in 

allocating resources to the most impactful improvements. 

● Measure the impact of product changes: By comparing funnel metrics before and after 

implementing changes, teams can quantify the effectiveness of their interventions. 

● Set realistic conversion goals: Historical funnel data provides a baseline for setting achievable 

targets and benchmarking performance. 

● Segment users: Analyzing how different user cohorts move through the funnel can reveal 

valuable insights about user preferences and behaviors. 

The power of funnel analysis lies in its ability to provide a clear, data-driven picture of the 

user journey. This visualization makes it easier for stakeholders across the organization to 

understand and act on user behavior patterns. For instance, marketing teams can use funnel 

insights to refine their messaging and target their efforts more effectively, while development 

teams can prioritize features that address the most significant drop-off points [4]. 

Furthermore, funnel analysis can be extended beyond the traditional product usage scenario. 

It can be applied to various business processes, such as sales pipelines, customer support 

workflows, or even employee onboarding procedures. This versatility makes funnel analysis a 

valuable tool across multiple departments within an organization. 

By leveraging funnel analysis, product managers can make data-driven decisions to 

optimize each stage of the user journey, ultimately leading to improved user engagement, higher 

retention rates, and increased revenue. As businesses continue to prioritize user experience and 

customer satisfaction, the role of funnel analysis in shaping product strategy is likely to become 

even more crucial. 

 

Fig. 1: Conversion Rates Across Key Stages of User Journey [3, 4] 
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Data Model: 

To implement funnel analysis in modern data warehouses, we begin with a simplified schema 

centered around a single "Events" table. This table typically contains essential columns such as 

user_id, event_name, and event_time. While this model makes some simplifying assumptions, 

it serves as a foundational structure for understanding funnel analysis implementation. It's 

important to note that modern data warehouses can handle far more complex scenarios 

efficiently, including semi-structured data and multiple table joins [5]. 

The Events table schema might look like this: 
CREATE TABLE Events ( 

    event_id INT PRIMARY KEY, 

    user_id INT, 

    event_name VARCHAR(255), 
    event_time TIMESTAMP, 

    additional_attributes JSON 

); 

This schema allows for flexibility in capturing various event types while maintaining a 

structured core. The additional_attributes JSON column can store event-specific data, 

accommodating the diverse nature of user interactions without requiring schema changes for 

each new event type. 

When it comes to executing funnel queries, two primary approaches have emerged, each 

with its own set of advantages and challenges: 

1. Join Sequence Approach: 

This method relies on creating subqueries for each funnel stage and then joining the results to 

calculate user progression. The process involves: 
● Generating a subquery for each stage of the funnel 

● Joining these subqueries to track user movement through the stages 

A simplified example of this approach might look like: 

 

   WITH stage1 AS ( 
       SELECT DISTINCT user_id 

       FROM Events 

       WHERE event_name = 'Getting Started' 
   ), 

   stage2 AS ( 

       SELECT DISTINCT e.user_id 

       FROM Events e 
       JOIN stage1 s ON e.user_id = s.user_id 

       WHERE e.event_name = 'Analytics Course' 

       AND e.event_time > (SELECT event_time FROM Events WHERE user_id = e.user_id AND 
event_name = 'Getting Started' LIMIT 1) 

   ), 

   -- Additional stages... 
   SELECT  

       COUNT(DISTINCT stage1.user_id) AS stage1_count, 

       COUNT(DISTINCT stage2.user_id) AS stage2_count, 

       -- Additional stage counts... 
   FROM stage1 

   LEFT JOIN stage2 ON stage1.user_id = stage2.user_id 

   -- Additional joins... 
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Advantages: 

● Straightforward SQL syntax, making it easier for less experienced analysts to understand and 

modify 

● Intuitive representation of the funnel stages in the query structure 

Challenges: 

● Requires multiple table scans, which can be resource-intensive for large datasets 

● Potentially expensive joins between subqueries, especially with high-cardinality user IDs 

2. Stacked Window Functions Approach: 

This more advanced technique leverages SQL window functions to create a stack of operations, 

one for each funnel stage. The process involves: 
● Utilizing window functions to partition data by user and order by event time 

● Creating a cumulative stack of these functions to represent each funnel stage 

An example of this approach: 
 

   WITH funnel_stages AS ( 

       SELECT 
           user_id, 

           MAX(CASE WHEN event_name = 'Getting Started' THEN event_time END) OVER 

(PARTITION BY user_id) AS stage1_time, 

           MAX(CASE WHEN event_name = 'Analytics Course' THEN event_time END) OVER 
(PARTITION BY user_id) AS stage2_time, 

           -- Additional stages... 

       FROM Events 
   ) 

   SELECT 

       COUNT(DISTINCT user_id) AS total_users, 
       COUNT(DISTINCT CASE WHEN stage1_time IS NOT NULL THEN user_id END) AS 

stage1_count, 

       COUNT(DISTINCT CASE WHEN stage2_time IS NOT NULL THEN user_id END) AS 

stage2_count, 
       -- Additional stage counts... 

   FROM funnel_stages; 

    

Advantages: 

● Performs a single table scan, significantly reducing I/O operations 

● Results in a simpler relational plan, often leading to better query performance 

Potential optimization: 

● Clustering the Events table by event_time can further enhance performance by reducing or 

eliminating the need for sorting operations 

The choice between these approaches often depends on factors such as the analysis's 

specific requirements, the dataset's size, and the capabilities of the data warehouse in use. While 

the Join Sequence Approach might be more intuitive for simple funnels, the Stacked Window 

Functions Approach generally offers superior performance for complex, multi-stage funnels on 

large datasets [6]. 
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It's worth noting that modern data warehouses continue to evolve, with many now offering 

advanced optimizations that can significantly improve the performance of both approaches. 

These optimizations may include intelligent query planning, automatic indexing, and adaptive 

execution strategies. As such, data analysts and engineers must stay informed about the latest 

features and best practices specific to their chosen data warehouse platform. 

 

Approach Table Scans Query 

Complexity 

Performance on 

Large Datasets 

Ease of 

Understanding 

Join Sequence Multiple High Lower Higher 

Stacked Window 

Functions 

Single Medium Higher Lower 

Table 1: Comparison of Funnel Analysis Approaches in Data Warehouses [5, 6] 

Query Optimization Techniques: 

Modern data warehouses employ sophisticated optimization techniques to enhance the 

performance of complex queries, including those used in funnel analysis. These optimizations 

are crucial for handling large-scale data efficiently and providing timely insights. Let's explore 

some of the key optimization techniques: 

1. Factoring out redundant computations: 

Advanced query optimizers can identify and eliminate redundant calculations within a query. 

This process, known as common subexpression elimination, involves recognizing repeated 

subqueries or expressions and computing them only once. The results are then reused across 

the query, significantly reducing processing time and resource consumption [7]. 

For example, in a funnel analysis query, we might have: 

   SELECT  

     COUNT(DISTINCT CASE WHEN event_name = 'Sign Up' THEN user_id END) AS signups, 

     COUNT(DISTINCT CASE WHEN event_name = 'Purchase' THEN user_id END) AS purchases, 

     COUNT(DISTINCT CASE WHEN event_name = 'Sign Up' THEN user_id END) /  

     COUNT(DISTINCT user_id) AS signup_rate 

   FROM events 

   WHERE date >= '2023-01-01' 

The optimizer would recognize that the COUNT(DISTINCT CASE WHEN event_name = 

'Sign Up' THEN user_id END) expression is repeated and compute it only once. 

2. Pushing aggregations below joins: 

This technique, also known as aggregate pushdown, involves moving aggregation operations 

before join operations in the query execution plan. By performing aggregations earlier in the 

process, the amount of data that needs to be joined is reduced, leading to improved query 

performance. This is particularly beneficial in funnel analysis queries where aggregations on 

user actions are common before joining with other stages of the funnel. 
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3. Single sort across multiple window functions: 

When dealing with multiple window functions that share the same partitioning and ordering 

criteria, modern optimizers can perform a single sort operation that serves all these functions. 

This is especially relevant in the Stacked Window Functions approach to funnel analysis, where 

multiple window functions are used to represent different stages of the funnel. By avoiding 

redundant sorting operations, query execution time can be significantly reduced. 

For instance, in a query like: 

   SELECT 

     user_id, 

     MAX(CASE WHEN event_name = 'Sign Up' THEN event_time END) OVER (PARTITION BY 

user_id) AS signup_time, 

     MAX(CASE WHEN event_name = 'Purchase' THEN event_time END) OVER (PARTITION BY 
user_id) AS purchase_time 

   FROM events 

The optimizer would perform a single sort operation on (user_id, event_time) to serve both 

window functions. 

4. Local distinct aggregation within partitions: 

For queries involving distinct aggregations, such as counting unique users in each funnel stage, 

optimizers can perform these aggregations locally within data partitions. This approach is 

particularly effective when data is already partitioned by the aggregation key (e.g., user_id). By 

avoiding the need to shuffle data across nodes in a distributed system, this optimization can 

lead to substantial performance improvements [8]. 

These optimization techniques work in concert to dramatically improve query performance, 

especially for complex analytical queries like those used in funnel analysis. However, it's 

important to note that the effectiveness of these optimizations can vary depending on the 

specific data warehouse system, the nature of the data, and the complexity of the query. 

Moreover, query optimization is an ongoing field of research and development. Data 

warehouse vendors continually refine their optimization strategies and introduce new 

techniques. For instance, some systems now employ machine learning algorithms to predict the 

most efficient query execution plans based on historical performance data. 

To fully leverage these optimization techniques, it's crucial for data engineers and analysts to: 
1. Understand the specific optimization capabilities of their chosen data warehouse system 

2. Design schemas and write queries that can take advantage of these optimizations 

3. Regularly review and update their approach as new optimization features become available 

For example, when designing a schema for funnel analysis, consider: 
● Partitioning strategies that align with common query patterns 

● Appropriate indexing to support frequent join and filter operations 

● Denormalization techniques to reduce the need for complex joins 

By staying informed about these advanced optimization techniques and applying them 

judiciously, organizations can ensure that their funnel analysis queries - and indeed all their 

analytical workloads - are executed with maximum efficiency, enabling faster insights and 

better decision-making. 
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Fig. 2: Comparative Impact of Query Optimization Techniques in Funnel Analysis [7, 8] 

PERFORMANCE CONSIDERATIONS: 

When implementing funnel analysis in modern data warehouses, it's crucial to consider the 

performance implications of different query approaches. Both the Join Sequence and Stacked 

Window Functions methods have unique performance characteristics that can be optimized 

further: 

1. Join Sequence Approach: 

The Join Sequence method, while intuitive, can face performance challenges, especially with 

large datasets. However, it may benefit significantly from pre-computed join indices. These 

indices are data structures that store the results of join operations, allowing for faster retrieval 

during query execution [9]. 

Pre-computed join indices can dramatically improve query performance by: 
● Reducing the need for on-the-fly join computations 

● Minimizing data movement across the cluster 

● Enabling faster data access patterns 

For example, in a funnel analysis scenario, we might create join indices that precompute 

the relationships between user actions across different funnel stages. This could involve 

creating an index that maps user IDs to their progression through the funnel stages, allowing 

for rapid retrieval during query execution. 

However, it's important to note that while pre-computed join indices can offer substantial 

performance benefits, they also come with trade-offs: 
● Increased storage requirements to maintain the indices 

● Additional computational overhead to keep indices up-to-date as new data arrives 

● Potential impact on data ingestion performance 

Therefore, the decision to implement pre-computed join indices should be based on a careful 

analysis of query patterns, data volumes, and available resources. 
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2. Stacked Window Functions Approach: 

The Stacked Window Functions method can leverage table clustering for improved 

performance. Table clustering involves physically organizing table data based on specified 

columns or expressions, which can significantly enhance query efficiency [10]. 

In the context of funnel analysis, clustering the Events table by event_time can yield several 

benefits: 
● Reduced I/O: Queries filtering on event_time can skip reading irrelevant data blocks 

● Improved sort performance: Data may already be partially or fully sorted, reducing the 

computational cost of window function operations 

● Enhanced data locality: Related events are stored together, potentially improving cache hit rates 

To implement effective clustering for funnel analysis: 
● Choose clustering keys that align with common query patterns (e.g., event_time and user_id) 

● Regularly maintain clustering through automated processes or manual reorganization 

● Monitor query performance to ensure clustering continues to provide benefits as data and query 

patterns evolve 

While clustering can offer significant performance improvements, it may not be equally 

beneficial for all queries. Queries that don't align with the clustering strategy may not see the 

same level of performance enhancement. 

When deciding between these approaches and considering their respective optimizations, 

it's essential to: 
1. Analyze your specific workload and query patterns 

2. Conduct performance testing with representative data volumes 

3. Consider the trade-offs between query performance, storage costs, and maintenance overhead 

4. Regularly reassess your approach as data volumes grow and query patterns evolve 

By carefully considering these performance optimizations and tailoring them to your 

specific use case, you can ensure that your funnel analysis queries execute efficiently, providing 

timely insights to drive product decisions. 

 

Characteristic Join Sequence with Pre-

computed Indices 

Stacked Window Functions 

with Table Clustering 

Query Performance High High 

Storage Overhead High Medium 

Maintenance Complexity High Medium 

Data Ingestion Impact Medium Low 

Flexibility for Various Queries Medium High 

Table 2: Performance Trade-offs in Funnel Analysis Approaches [9, 10] 
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CONCLUSION 

In conclusion, funnel analysis emerges as a pivotal tool for product managers, offering 

invaluable insights into user behavior and product performance. Implementing funnel analysis 

in modern data warehouses, through Join Sequence or Stacked Window Functions approaches 

provides a powerful means to track and optimize user journeys. Organizations can extract 

maximum value from their funnel analysis efforts by leveraging advanced query optimization 

techniques and carefully considering performance implications.  

As data analytics evolves, staying informed about the latest optimization strategies and 

regularly reassessing analytical approaches will be crucial for maintaining a competitive edge. 

Ultimately, the effective use of funnel analysis, supported by robust data warehouse 

capabilities, empowers businesses to make data-driven decisions that enhance user experience, 

increase conversions, and drive overall product success. 
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